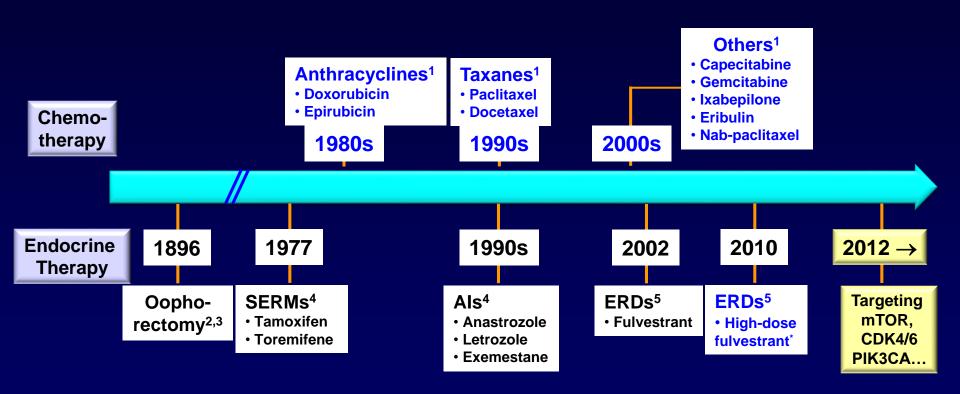


Leading the Way in the Treatment of HR+ HER2- MBC: CDK 4/6 Inhibitors in Clinical Practice



Hope S. Rugo, MD
Professor of Medicine
Director, Breast Oncology and Clinical Trials Education
University of California San Francisco Comprehensive Cancer Center
San Francisco, CA USA

Topics

- CDK 4/6 inhibitors have revolutionalized the treatment of HR+ MBC
- Is there an optimal sequence for hormone therapy?
- Should all patients receive CDK4/6 inhibitors in the first-line setting?
 - Understanding subsets and toxicity
 - Options for sequential therapy
- Understanding mechanisms of resistance

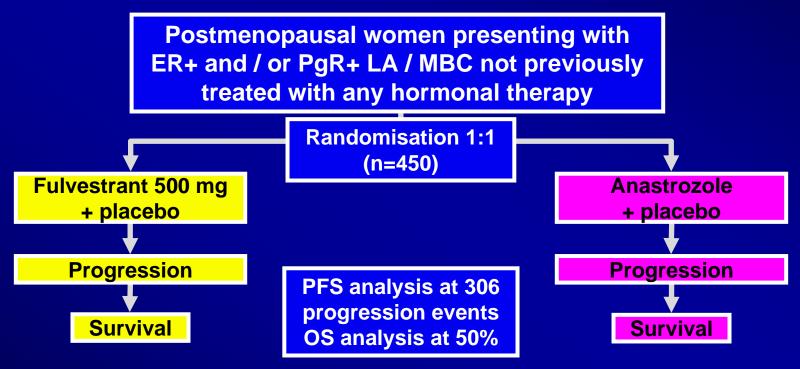
Historical Timeline of Therapies for HR+ Advanced Breast Cancer

AI, aromatase inhibitor; ERDs, estrogen receptor downregulators; HR+; hormone-receptor positive; SERMs, selective estrogen receptor modulators * Marginal improvement over lower dose fulvestrant.

^{1.} Advanced Breast Cancer Community Website. Available at: http://www.advancedbreastcancercommunity.org/treatment/drugs.html. Accessed April 20, 2015; 2. Beatson GT. *Lancet.* 1896;2:104-107; 3. Beatson GT. *Lancet.* 1896;2:162-165; 4. Cohen MH, et al. *Oncologist.* 2001;6(1):4-11; 5. Faslodex® [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2011.

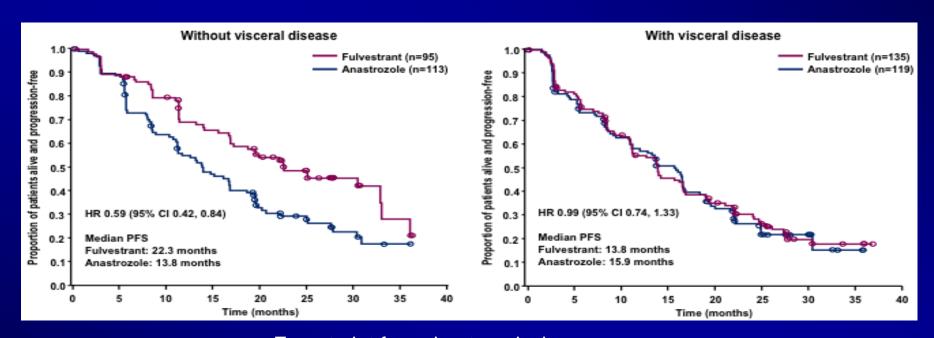
HR+ MBC: Concordance Across International Guidelines

ABC2 treatment guidelines for advanced breast cancer: 1,2


Endocrine therapy (ET) is the preferred option for hormone receptor—positive disease, even in the presence of visceral disease, unless there is concern or proof of endocrine resistance or rapidly progressive disease needing a fast response

ASCO Guidelines for Metastatic HR+ Breast cancer³

- Treatment should be administered until there is unequivocal evidence of disease progression as documented by imaging, clinical examination, or disease-related symptoms
- Use of combined endocrine therapy and chemotherapy is not recommended
- Patients should be encouraged to consider enrolling in clinical trials, including patients receiving treatment in first-line setting


^{1.} Cardoso F, et al. *Ann Oncol* 2014. Wilcken N, et al. 2. *Cochrane Database Syst Rev.* 2003;2:CD002747. 3.Rugo HS, et al. *J Clin Oncol*. 2016;34:3069-3103.

What is the Best First-Line Hormone Therapy for Advanced Disease?: FALCON

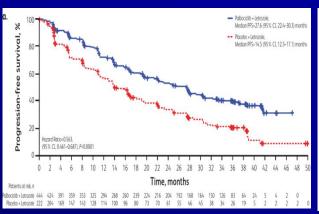
One prior line of chemotherapy allowed. No HRT within 6 months Stratification: measurable vs non-measurable disease; locally advanced vs metastatic

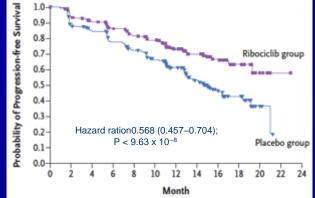
FALCON: PFS IN PATIENTS WITH OR WITHOUT VISCERAL DISEASE

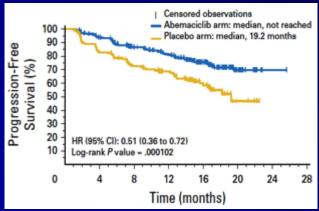
Overall study results HR 0.797 (95% CI 0.637, 0.999); p=0.0486

Median PFS

Fulvestrant: 16.6 months Anastrozole: 13.8 months

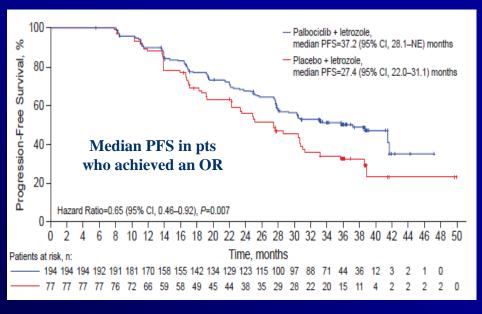

Forest plot for subset analysis:

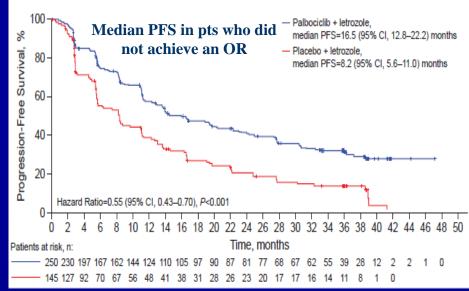

- No difference among predefined subsets EXCEPT visceral disease
 - HR 0.992 (visceral disease) vs 0.592 (non-visceral disease)
- No difference in OS to date


CDK 4/6 Inhibitors: Details

	Palbociclib (Ibrance, Pfizer)	Ribociclib (Kisqali, Novartis)	Abemiciclib (Verzenio, Lilly)
Dose	125 mg daily	600 mg daily	200 mg twice daily
Schedule	3 weeks on/ 1 week off	3 weeks on/ 1 week off	Continuous
Completed Phase III Trials	1 st line: PALOMA-2 2 nd line: PALOMA-3	1 st line: MONALEESA-2, MONALEESA-7 2 nd line: MONALEESA-3	1 st line: MONARCH-3 1 st or 2 nd line: MONARCH-2 Single agent post chemo: MONARCH-1
FDA Approval Status	2015: 1 st Line (letrozole) 2016: 2 nd line (fulvestrant)	2017: 1 st line (letrozole) 2018: 1 st and 2 nd line (fulvestrant) pending	2017: 2 nd line (fulvestrant); Single agent post chemotherapy

CDKi + Als: Progression-Free Survival 1st line

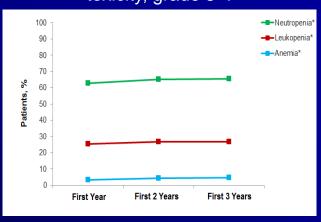




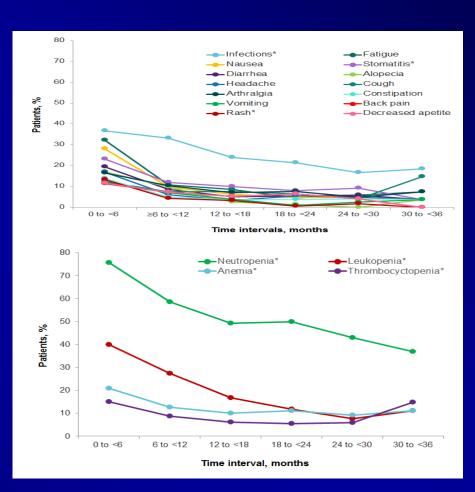
Palbociclib PALOMA-2 Ribociclib MONALEESA-2 Abemiciclib MONARCH-3

Approximate doubling in PFS over endocrine therapy alone

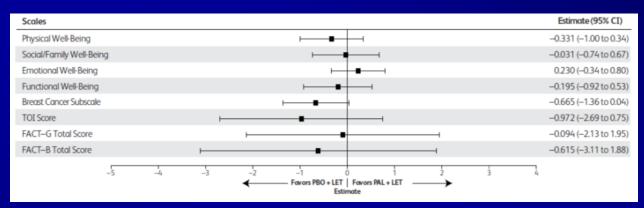
PFS Outcome is Independent of Objective Response in Patients with HR+/HER2- ABC Treated with Palbociclib Plus Letrozole Compared to Letrozole: Analysis from PALOMA-2

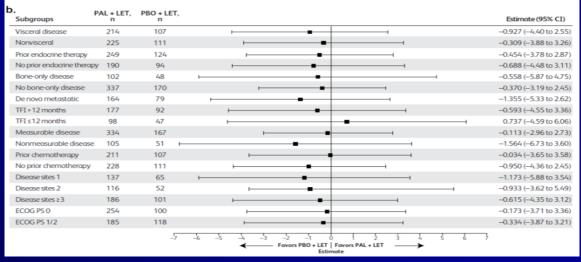


Phase III First-Line Studies in HR+ MBC

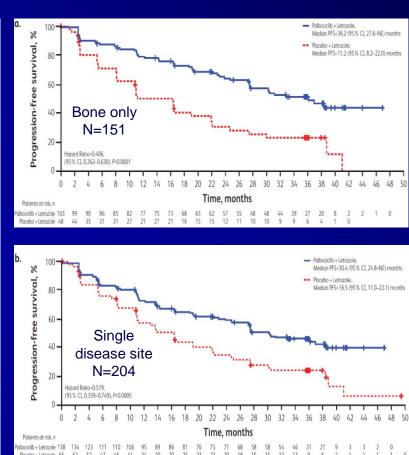

	Paloma-2 Finn et al, NEJM 2016; Rugo et al BCRT 2019	Monaleesa-2 Hortobagyi et al, NEJM 2016, ASCO 17	Monarch-3 Goetz et al, JCO 2017	Falcon Robertson et al, Lancet 2016
Study design	Letrozole/Pla vs Let/Palbociclib (1:2)	Letrozole/Pla vs Let/Ribociclib (1:1)	Letrozole/Pla vs Let/Abemaciclib (1:2)	Anastrozole/Pla vs Fulvestrant/Pla
No. of pts	666 No progression on Als	668 No progression on Als	493 No progression on Als	462 No prior hormone therapy
PFS	14.5 vs 27.6 mo HR 0.56 (0.46-0.69) p<0.000001	16.0 vs 25.3 mo HR 0.556 (0.43- 0.72); p=0.00000329	14.7 vs NR mo HR 0.53 (0.409- 0.723) P=0.000021	13.8 vs 16.6 mo. HR 0.797 (0.64- 0.999); p=0.0486
All oral	Yes	Yes	Yes	No
Subset difference	PFS benefit maintained with next therapy	NR	Yes but medians not yet reached	13.8 v 22.3 mo in n= 218 (47%) without visceral disease No difference in those with visceral disease

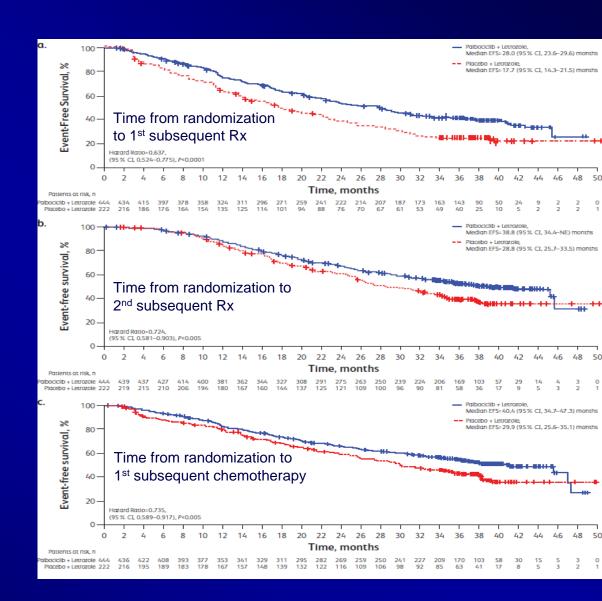
Long-Term Safety: Paloma-2


Pooled incidence of hematologic toxicity, grade 3-4



Pooled incidence of nonhematogic and hematologic adverse events by 6-month treatment intervals

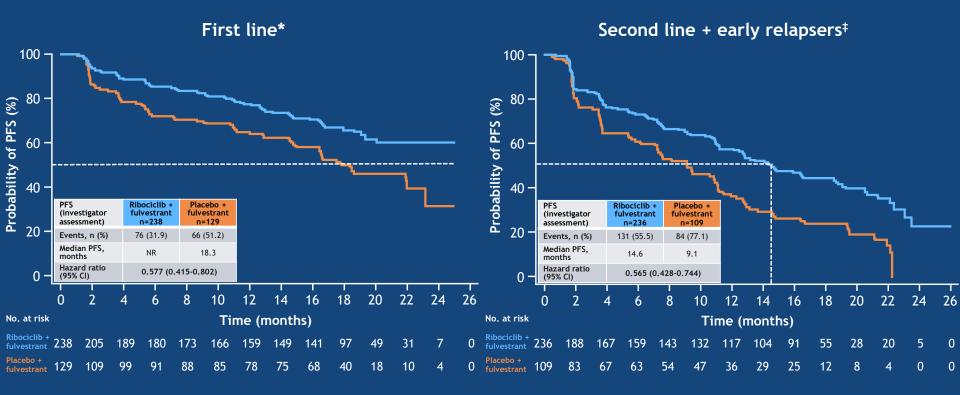

Patient Reported Outcomes: FACT-B Scores in Paloma-2



PALOMA-2 Subset Analysis

	PAL+LET	PBO+LET	PAL+LET	PBO+LET	PAL+LET v	s PBO+LET	
Baseline Factors	Patient	ts, n (%)	mPFS (95% CI)	HR (9:	5% CI)	P*
All randomized patients, IA	444 (100)	222 (100)	27.6 (22.4-30.3)	14.5 (12.3-17.1)		0.56 (0.46-0.69)	<0.0001
All randomized patients, BICR	444 (100)	222 (100)	35.7 (27.7-38.9)	19.5 (16.6-26.6)		0.61 (0.49-0.77)	<0.0001
Visceral disease	214 (48.2)	110 (49.5)	19.3 (16.4-24.2)	12.3 (8.4-16.4)		0.62 (0.47-0.81)	<0.0005
Nonvisceral disease	230 (51.8)	112 (50.5)	35.9 (27.7-NE)	17.0 (13.8-24.8)	├─-● ───	0.50 (0.37-0.67)	<0.0001
Bone-only disease	103 (23.2)	48 (21.6)	36.2 (27.6-NE)	11.2 (8.2-22.0)	⊢ •	0.41 (0.26-0.63)	<0.0001
No bone-only disease'	341 (76.8)	174 (78.4)	24.2 (19.4-27.7)	14.5 (129-18.5)		0.62 (0.50-0.78)	<0.0001
DFI' >12 mo	179 (40.3)	93 (41.9)	30.3 (24.8-NE)	13.8 (8.8-18.2)		0.55 (0.40-0.76)	<0.0005
DFI' s12 mo	98 (22.1)	48 (21.6)	16.6 (13.9-24.2)	11.0 (5.6-12.9)	─	0.48 (0.32-0.72)	<0.0005
DFI*>2 y	154 (34.7)	77 (34.7)	38.5 (27.5-NE)	16.6 (13,7-23.5)	⊢ • − •	0.52 (0.36-0.75)	<0.0005
DFI'>5 y	90 (20.3)	46 (20.7)	38.6 (27.6-NE)	23.5 (16.3-32.2)	-	0.60 (0.36-1.00)	<0.05
DFI'>10 y	32 (7.2)	23 (10.4)	NR (30.4-NE)	23.5 (16.6-NE)	-	0.44 (0.19-1.03)	<0.05
De novo metastatic	167 (37.6)	81 (36.5)	27.9 (22.1-33.4)	22.0 (13.9-274)		0.61 (0.44-0.85)	<0.005
DFI from prior ET >12 mo	156 (35.1)	78 (35.1)	27.6 (22.2-38.6)	13.8 (8.2-16.6)		0.58 (0.41-0.82)	<0.001
DFI from prior ET ≤12 mo	94 (21.2)	48 (21.6)	16.6 (13.9-24.2)	11.0 (5.6-12.9)		0.49 (0.33-0.73)	<0.0005
Measurable disease	338 (76.1)	171 (77.0)	23.7 (19.3-27.6)	14.5 (12.3-18.5)	→	0.63 (0.50-0.79)	< 0.0001
Nonmeasurable disease ^a	106 (23.9)	51 (23.0)	36.2 (27.6-NE)	16.5 (8.3-19.6)		0.39 (0.25-0.60)	<0.0001
No prior ET with visceral disease	86 (19.4)	47 (21.2)	23.7 (16.8-30.3)	13.9 (10.2-22.2)	· · · · · · · · ·	0.55 (0.36-0.85)	<0.005
No prior ET without visceral disease	108 (24.3)	49 (22.1)	36.2 (27.9-NE)	27.6 (19.1-35.6)		0.59 (0.38-0.92)	<0.01
Prior ET	250 (56.3)	126 (56.8)	24.2 (18.8-27.6)	11.2 (8.4-14.5)		0.54 (0.42-0.71)	<0.0001
No prior ET	194 (43.7)	96 (43.2)	30.3 (24.5-35.7)	21.9 (15.9-27.4)		0.59 (0.43-0.80)	<0.0005
Prior chemotherapy	213 (48.0)	109 (49.1)	24.8 (19.3-27.9)	12.9 (9.6-16.5)		0.53 (0.40-0.71)	<0.0001
No prior chemotherapy	231 (52.0)	113 (50.9)	279 (23.2-33.4)	18.5 (13.6-24.8)	→•	0.59 (0.45-0.79)	<0.0005
Disease site, 1	138 (31.1)	66 (29.7)	30.4 (24.8-NE)	16.5 (11.0-22.1)	-	0.52 (0.36-0.75)	< 0.0005
Disease sites, 2	117 (26.4)	52 (23.4)	28.1 (19.4-NE)	16.3 (11.0-27.4)		0.57 (0.37-0.89)	<0.01
Disease sites, ≥3	189 (42.6)	104 (46.8)	23.7 (19.2-27.6)	13.8 (8.8-17.0)		0.61 (0.46-0.82)	<0.0005
ECOG PS 0	257 (579)	102 (45.9)	279 (24.9-36.2)	19.3 (14.5-24.9)		0.65 (0.48-0.87)	<0.005
ECOG PS 1/2	187 (42.1)	120 (54.1)	22.2 (16.6-27.7)	11.8 (8.3-16.5)		0.51 (0.39-0.68)	<0.0001
Age <65 y	263 (59.2)	141 (63.5)	23.2 (19.3-27.6)	13.7 (11.0-16.6)		0.55 (0.43-0.70)	<0.0001
Age 265 y	181 (40.8)	81 (36.5)	30.6 (27.6-NE)	19.1 (11.0-30.4)		0.60 (0.43-0.86)	<0.005

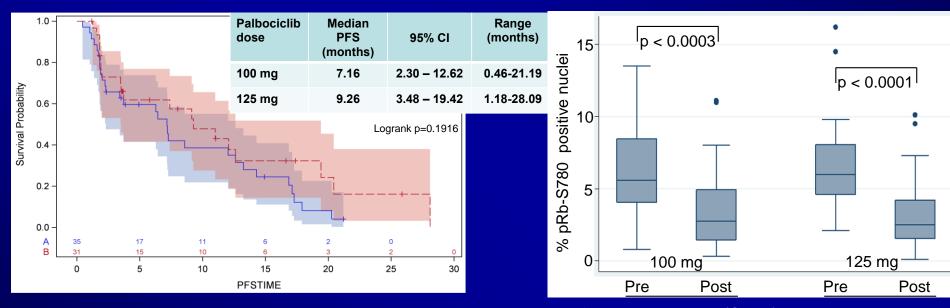
Time to Initiation of Subsequent Anti-Cancer Therapies



Fulvestrant with CDK4/6i as First Line Therapy for HR+ MBC: MONALEESA 3

- Randomized phase III placebo controlled trial of ribociclib and fulvestrant
 - 2:1 randomization, n=726
 - No prior chemothrapy, measurable disease
 - No or <1 line of prior endocrine therapy for MBC

Prior endocrine therapy status		
First line [¶]	238 (49.2)	129 (53.3)
Second line + early relapsers**	236 (48.8)	109 (45.0)
Prior endocrine therapy setting		
(Neo)adjuvant	289 (59.7)	142 (58.7)
Advanced	110 (22.7)	40 (16.5)


PFS by prior endocrine therapy status

*Treatment naive for ABC; ‡Received up to 1 line of prior endocrine therapy for ABC.

Toxicity in 1st line	Palbociclib	Ribociclib	Abemaciclib
Dosing schedule	3 wks on, one wk off	3 wks on, one wk off	Continuous
≥Gr 3 neutropenia	66%	59.6%	21.1%
Febrile neutropenia	1.6%	1.5%	<1%
≥Gr 3 diarrhea (all grade)	1% (26%)	1.2% (35%)	9.5 (81%)
Gr2/3 QTc prolongation	-	3/0.3	-
≥Gr 3 AST/ALT increase	-	5.7/9.3%	3.8/7%
Dose reduction/discontin due to AEs	36% / 9.7%	51% / 7.4%	43.4% / 19.6%
Alopecia	33%	33%	27%
Increased creatinine	-	-	98% (nl fcn)
VTE/PE	0.9 vs 1.4%	NR	4.9 vs 0.6%

Palbociclib with Fulvestrant or Tamoxifen for HR+ MBC with Prior Chemotherapy for Advanced Disease (TBCRC 035): A Phase II Study with Pharmacodynamic Markers

100 vs 125 mg by total number of grade 3/4 neutropenia events per patient:
Two sided Wilcoxon Rank-Sum p-value = 0.036

% of nuclei with pRb (S780) and Ki67-positive nuclei significantly lower in post-Rx skin biopsies

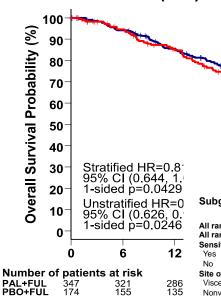
No significant difference between % change in pRb and Ki67 in post-Rx biopsies and dose of palbociclib (p>0.1)

No impact of lower dose on response, PFS, inhibition of pRB or Ki67

CDKi in Endocrine Pre-Treated

	PALOMA 3	MONARCH 2	MONALEESA 3
Treatment	Fulvestrant/palbociclib vs fulvestrant/PLA	Fulvestrant/abemaciclib vs fulvestrant/PLA	Fulvestrant/ribociclib vs fulvestrant/PLA
Number	521	699	345 (2 nd line)
Randomization	2:1	2:1	2:1
Prior chemotherapy for met disease (%)	31-36%	0	0
ET resistance (%) Primary Secondary	20 79	25 73	NR
Prior AI	85-87%	67-71%	59=60%

Primary ET Resistance:


- Progression on the 1st 2 years of adjuvant ET, OR on the 1st 6 months of 1st line ET for MBC Secondary ET Resistance:
- Progression after 2 years on adjuvant ET, within 12 months of end of adjuvant ET, OR after
 6 months on ET for MBC

Comparison of Trials in Patients with Progression on Prior NSAI

	PALOMA 3 Turner et al, NEJM 2015, NEJM 2018	MONARCH 2 Sledge et al, JCO 2017	MONALEESA 3 Slamon et al, JCO 2018	BOLERO 2 Baselga et al, NEJM 2012, Yardley et al, Adv Ther 2013	PreCOG Kornblum et al, SABCS 2016
Study design	Fulvestrant/pla vs fulvestrant/ palbociclib	Fulvestrant/pla vs fulvestrant/ abemaciclib	Fulvestrant/pla vs fulvestrant/ ribociclib	Exemestane/pla vs exemestane/EVE	Fulvestrant/pla vs fulvestrant/EVE
Patient #	521	699	345 (2 nd line)	724	131
PFS (mo) p value (HR)	4.6 vs 11.2 (p<.0001 (HR 0.5)	9.3 vs 16.4 P<.0000001 (HR 0.55)	9.1 vs 14.6 (HR 0.565)	3.2 vs 7.8 (inv) 4.1 vs 11 (central) p<.0001 (HR 0.38)	5.1 vs 10.4 p=.02 (HR 0.6) 12 mo PFS in MANTA trial! (Schmid et al, SABCS 2017)

No differences in subset analysis

OVERALL SURVIVAL (ITT)

Absolute improvement in media

The prespecified significa adjusted

_	Median OS=34.9 months 95% CI (28.8, 40.0) Placebo+Fulvestrant (N=174) Median OS=28.0 months 95% CI (23.6, 34.6)
-	

Palbociclib+Fulvestrant (N=347)

OVERALL SURVIVAL BY SUBGROUPS

PAL+FUL

Median OS

(95% CI)

34.9 (28.8-40.0)

34.9 (28.8-40.0)

39.7 (34.8-45.7)

20.2 (17.2-26.4)

27.6 (24.4-31.2)

46.9 (39.3-NE)

38.0 (24.4-NE)

34.8 (28.8-40.1)

25.6 (21.4-30.1)

36.1 (27.6-43.7)

38.0 (27.7-46.5)

30.0 (23.0-40.1)

35.6 (23.6–42.0) 36.5 (28.0–43.1)

28.6 (25.3-39.3)

38.8 (28.9-44.5)

34.8 (26.1-NE)

46.2 (36.5-NE)

PBO+FUL

Median OS

(95% CI)

28.0 (23.6-34.6)

28.0 (23.6-34.6)

29.7 (23.8-37.9)

26.2 (17.5-31.8)

24.7 (20.8-31.8)

35.4 (24.6-NE)

38.0 (22.2-NE) 27.1 (22.8-32.1)

26.2 (20.0-37.5) 29.7 (22.8-NE)

24.7 (19.5-34.6)

33.8 (23.5–41.4) 24.3 (20.0–29.7)

24.6 (19.7-33.0)

31.8 (22.8-39.1)

22.2 (15.7-29.5)

33.0 (24.3-41.6)

27.1 (5.3-NE)

Interaction

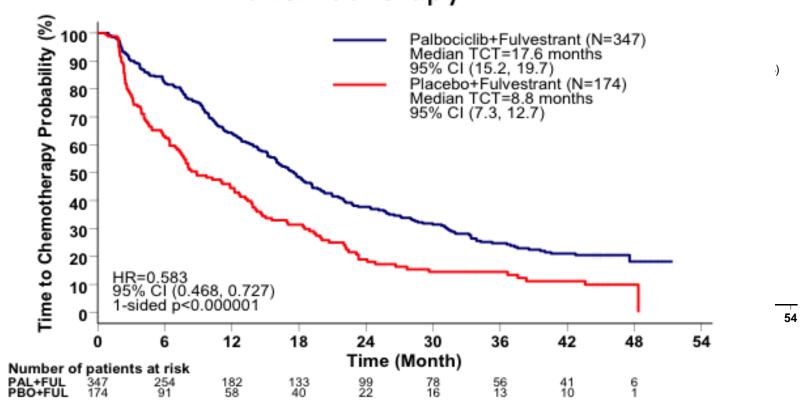
P Value

0.12

0.44

0.25

0.66


0.88

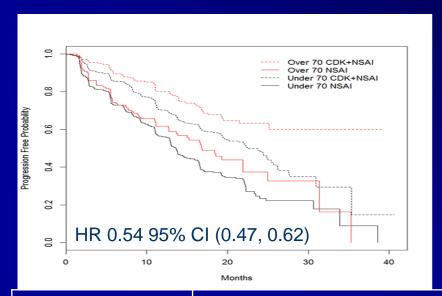
0.60

0.64

Subgroup	Patients, n (%)		HR (95% CI)
All randomized patients, ITT, stratified	521 (100)	⊢ ∔	0.81 (0.64–1.03)
All randomized patients, ITT, unstratified	521 (100)		0.79 (0.63–1.00)
Sensitivity to previous hormonal therapy*			
Yes	410 (78.7)		0.72 (0.55–0.94)
No	111 (21.3)	 	1.14 (0.71–1.84)
Site of metastatic disease*		<u> </u>	
Visceral	311 (59.7)	, 	0.85 (0.64–1.13)
Nonvisceral	210 (40.3)	 ■ 	0.69 (0.46-1.04)
Menopausal status at study entry*			
Pre/peri	108 (20.7)	, 	1.07 (0.61–1.86)
Post	413 (79.3)	 ■; 	0.73 (0.57–0.95)
Prior chemotherapy		. ! .	
Metastatic treatment	177 (34.0)	, I _ • , 	0.91 (0.63–1.32)
None	130 (25.0)	 - - - - - - - - 	0.68 (0.41–1.15)
Prior lines of therapy in metastatic setting		! .	
0	114 (21.9)	 	0.70 (0.43–1.14)
1	225 (43.2)	, -	0.86 (0.60–1.22)
2 ≥3	131 (25.1)	, 	0.76 (0.48–1.22)
ESR1 mutation status†	51 (9.8)		0.64 (0.29–1.40)
Positive	400 (00 0)	_ ! .	0.00 (0.40, 4.40)
Negative	106 (20.3) 289 (55.5)	 	0.69 (0.43–1.12)
PIK3CA mutation status†	269 (55.5)		0.85 (0.61–1.19)
Positive	133 (25.5)	! .	0.74 (0.48-1.14)
Negative	262 (50.3)		0.74 (0.48–1.14)
Negative	202 (30.3)	' [] '	0.64 (0.59–1.16)
		0.05 0.50 0.75 4.00 4.05 4.50 4.75 0.00	•
		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00	
	•	In favor of PAL+FUL In favor of PBO+FUL →	

Time From Randomization to post-progression Chemotherapy

Rx


OS in the palbociclib arm vs the placebo arm was 10.0 months.

Premenopausal Women: Phase III Data

- PALOMA-3 subset analysis (Loibl et al, Oncologist 2017)
 - N=108; fulvestrant plus OFS
 - Similar efficacy and toxicity
- MONALEESA-7 (Tripathy et al, Lancet Oncol 2018)
 - N=672, randomized 1:1 to tamoxifen/NSAI plus goserelin +/ribociclib or placebo
 - 26% received tamoxifen, 74% NSAIs
 - Efficacy similar to MONALEESA-2
 - PFS: 13 vs 23.8 months; HR 0.55 (0.44-0.69), p 0.0000000983
 - HR: similar between tamoxifen and NSAI
 - No difference in toxicity
 - Updated data expected ASCO 2019
- Exemestane/OS plus palbociclib (Young Pearl trial at ASCO 2019*)
- Important: Overall approach for pre-menopausal women on ovarian suppression should mimic that for post-menopausal women (Rugo et al, ASCO guidelines 2017)

US FDA Pooled Retrospective Subset Analysis of CDKi in Older Women

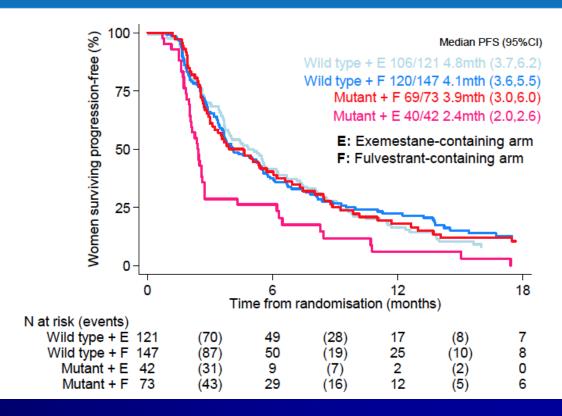
- Enrolled on registration trials submitted to the FDA
 - First-line therapy with Al plus CDK 4/6i
 - 329 of 1992 total patients aged ≥70
- Patient characteristics
 - 52% de novo metastatic disease,
 38% adjuvant hormone therapy
- No rx differences across age subgroups regardless of age cut off

	Median PFS (95% CI)
Age≥70 CDK4/6 (n=280)	NR (25.1 months, NR)
Age <70 CDK4/6 (n=826)	23.75 months (21.9, 25.4)
Age ≥70 Al only	16.8 months (13.7, 21.9)
Age <70 Al only	13.8 months (12.9, 14.7)

Tolerability and Safety

	Age < 65 years N = 625 (%)	Age ≥ 65 yea N = 479(%		ge ≥ 70 years N = 280 (%)
Grade 1-2 Adverse Events	610 (98)	470 (98)		277 (99)
Grade 3-4 Adverse Events	417 (66)	385 (80)		229 (82)
Grade 5 Adverse Events	7 (1)	11 (2)		8 (3)
		Age < 65 years N = 625 (%)	Age ≥ 65 years N = 479 (%)	Age ≥ 70 years N = 280 (%)
AE leading to dose reduction and/or interruption		411 (66)	360 (75)	216 (77)
AE leading to discontinuation		50 (8)	76 (16)	48 (17)

103 (16)

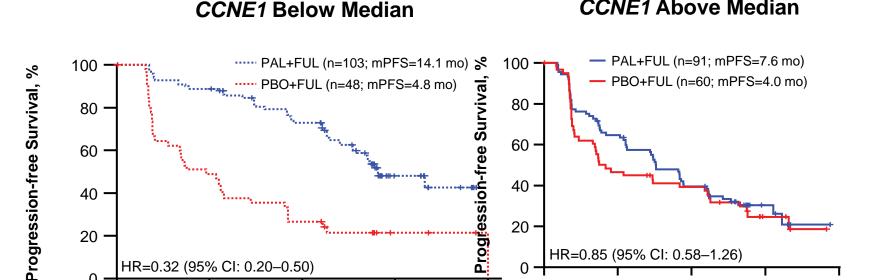

Serious Adverse Events

93 (33)

147 (31)

Can we Identify Which Tumors are More Sensitive to Specific Hormone Therapy with NGS?

SoFEA and EFECT meta-analysis for baseline detection of *ESR1* mutations



PFS improved on fulvestrant compared to exemestane for those with ESR1 mutations P=.01, HR 0.59; no difference for wild type

Mechanisms of Resistance to CDK 4/6i

- de novo resistance may be rare and hard to detect
 - High clinical benefit observed in phase III trials
 - Loss of RB results in mechanistic resistance
- Resistance acquired in patients progressing on CDK 4/6i
 - RB alterations: mutations acquired on fulvestrant/palbo in ~5%¹
 - Amplification of S phase CDKs, cyclins, ?amp of cyclin D1
 - Bypass CDK 4/6 by activating CDK2 through overexpression/amplification of CCNE 1/2²
 - Upregulation of signalling pathways that induce cyclins/ CDKs
 - PI3K, FGFR, RAS
 - Acquired ESR1 mutations result in resistance to hormone therapy

Higher Expression of CCNE1 is Associated with Relative Resistance to Palbociclib

20

High levels of rb-E2F gene expression signatures were associated with relative resistance to palbociclib

Time, months raction P = 0.00238

Data cutoff: Oct 23, 2015

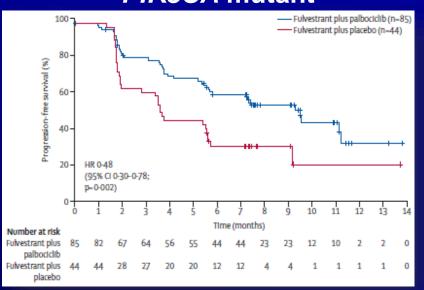
20 -

HR=0.32 (95% CI: 0.20-0.50)

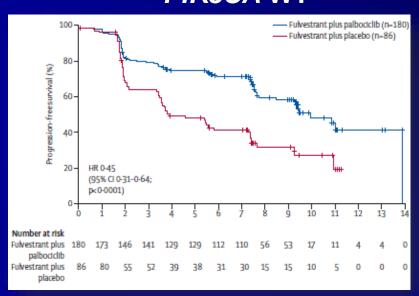
CCNE1 Above Median

HR=0.85 (95% CI: 0.58-1.26)

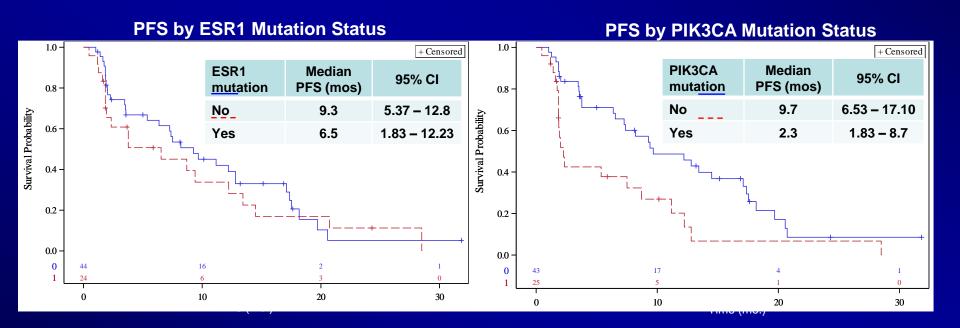
10


Time, months

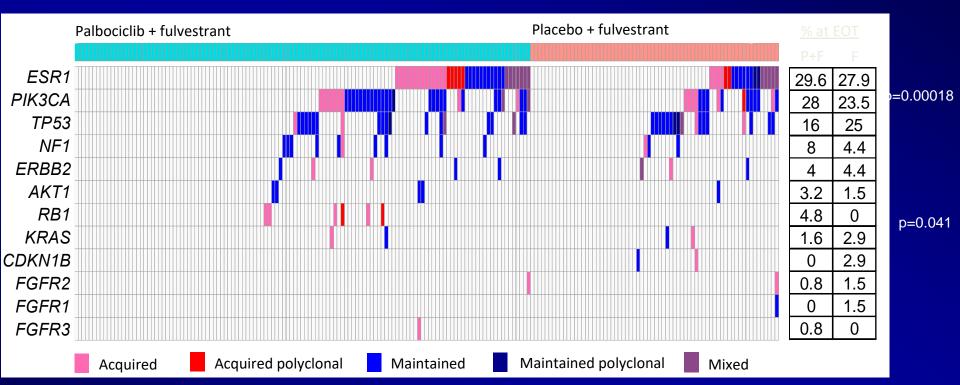
15


20

PIK3CA mutation status & response to CDK4/6 inhibitors in PALOMA-3



PIK3CA WT


In Paloma 3, PIK3CA mutations did not predict response to CDK4 inhibitors

TBCRC 035: PFS based on PIK3CA and ESR1 by cfDNA

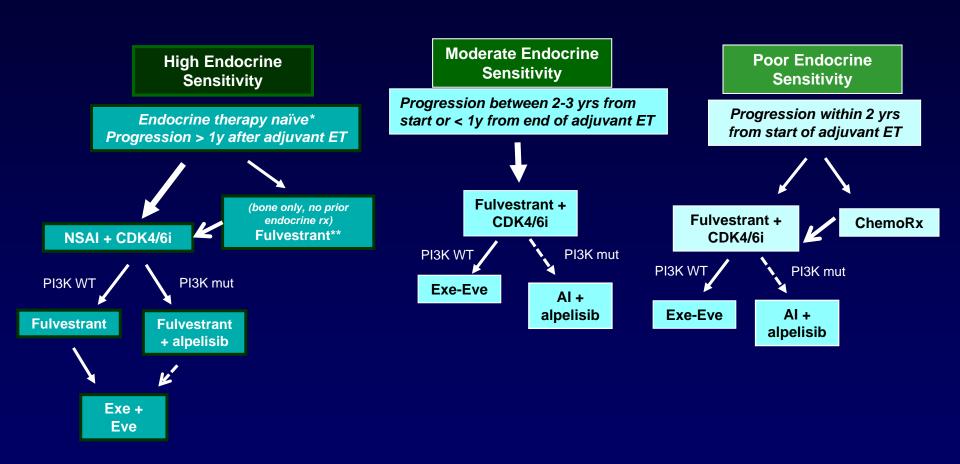
cfDNA may be a more accurate measure?

PALOMA3 End of Treatment Driver Mutation Landscape

Patients with at least 1 acquired mutation(s): - 28.0% (35/125) palbociclib plus fulvestrant - 22.1% (15/68) fulvestrant alone

Future Steps (examples)

- Improving response
 - Fulvestrant vs Al plus CDK 4/6i (Parsifal, 486 pts)
 - CDK 4/6i after progression on CDK 4/6i (multiple trials)
- Understanding and reversing resistance
 - CDK 4/6i plus PI3Ki (limited by toxicity)
 - CDK 4/6i plus combined inhibitors (mTOR and PI3Ki, others)
 - CDK 4/6i plus mTORi
 - CDK 4/6i plus FGFRi
 - CDK 4/6i plus checkpoint inhibition
- > 100 active studies on clinicaltrials.gov: early stage as the next frontier!


Early Stage Disease

- Post-neoadjuvant high risk
 - Penelope trial (n=1250)
 - Accrual completed
- Adjuvant
 - All focus on very high risk early stage HR+ BC
 - PALLAS (n=5600, includes stage IIa, 2 years, accrual completed)
 - monarchE (n=4580, 2 years, accrual completed)
 - NataLEE (n=4000; 3 years, newly open 2018)

Algorithm?

- Ever changing!
 - >12 months post adjuvant Al/denovo metastatic disease: Al+CDK
 4/6i
 - ≤12 months or intolerant of AI: Fulvestrant + CDK 4/6i
- What treatment after progression?
 - ESR1 mutation: fulvestrant with or without eve instead of exe/eve
 - Mutation based therapy?
 - PI3K inhibitor alpeslib for those with PI3K mutations
 - Beware acquired mutations and loss of ER with progression
- Who doesn't need CDK4/6i as initial therapy?
 - de novo limited bone only or soft tissue disease, very elderly with limited bone disease and endocrine sensitivity?
 - Need to have access to CDK 4/6i as second line therapy!

HR+HER2- ABC: Changing Paradigms

*De novo stage IV disease appears to be enriched in relative endocrine resistant disease
**No data comparing CDK4/6i combined with AI vs fulvestrant in the first line setting

